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ABSTRACT — Myo-Inositol (myo-Ins), key 
molecule participating in several intracellular 
signaling pathways and physiological pro-
cesses, has been proven to modulate inter-
leukin-6 (IL-6) levels in chronic inflammatory 
diseases and to possess endothelial protective 
properties. Moreover, myo-Ins promotes the 
maturation of pulmonary surfactant phos-
pholipids, with beneficial effects in the treat-
ment of premature infants with respiratory 
distress syndrome (RDS).

On these premises, myo-Ins has a potential 
application in the treatment of pulmonary 
diseases, and it could be successfully used to 
reduce the complications related to the SARS-
CoV-2 pandemic event. Though information 
about the virus is still scarce, it is becoming 
evident that the Coronavirus infection trig-
gers an interstitial pneumonia that quickly 
evolves into a severe RDS, associated with 
a thrombotic and vascular disease targeting 
endothelial cells throughout the body. These 
effects are most probably driven by a disas-
trous overreaction of the immune system, 
known as “cytokine storm”, which interests 
not only lungs but also gut, kidneys, heart, 
and brain, with platelet-endothelial dysfunc-
tion and abnormally rapid life-threatening 
blood clotting. Given the pathophysiology of 
the SARS-CoV-2 disease (COVID-19), it could 
be worth investigating whether myo-Ins 
properties can mitigate the disease-related 

complications in terms of surfactant produc-
tion, modulation of inflammatory cytokines 
and endothelial protection.
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INTRODUCTION

Lung diseases are growing causes of morbidity and mor-
tality, especially after the sudden rise of deaths due to the 
pandemic explosion of the SARS-CoV2 infections. 

Chronic obstructive pulmonary disease (COPD) is 
currently the 5th cause of death and is rising such that 
in the next years is expected to be the 4th most common 
cause of death worldwide. Other inflammatory lung 
diseases such as cystic fibrosis and interstitial lung dis-
ease are also frequently encountered and are character-
ized by outcomes such as death or poor quality of life. 

All these lung diseases are characterized by periodic 
or chronic inflammatory processes that can promote on-
cogenic transformations, genetic and epigenetic changes 
in malignant cells and a pro-tumorigenic inflammatory 
microenvironment with release of cytokines. 

Among these inflammatory cytokines, interleu-
kin-6 (IL‑6) has received greater attention because 
of its implication in a plethora of pathological condi-
tions including chronic inflammation, metabolic dis-
orders, tumor development, therapeutic resistance, 
and metastasis1. 
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Thus, considering its pivotal role, surfactant in-
activation and/or deficiency have been associated 
with a variety of lung diseases including pneumonia, 
asthma, and RDS in both adults and infants.

Namely, infants born before the term show imma-
ture lungs, unable to synthesize adequate amounts of 
functional surfactant and, therefore, there is an increase 
in surface tension and alveolar collapse16. If not treated, 
such atelectasis causes an increased work of breathing, 
intrapulmonary shunting, ventilation-perfusion mis-
match, hypoxia, and eventual respiratory failure17,18. 

Similarly, surfactant abnormalities have been 
reported in Adult Respiratory Distress Syndrome 
(ARDS), an acute respiratory failure with general-
ized lung involvement that carries a mortality rate of 
50% or more, despite recent advances in respiratory 
care19-21. ARDS is a heterogeneous syndrome associ-
ated with sepsis, aspiration, toxins, emboli, circula-
tory collapse, and metabolic, neurogenic, or hemato-
logic disorders; however, the resulting abnormalities 
in lung function are similar22,23. Ashbaugh et al24 
have suggested that the surfactant system in ARDS 
patients is damaged and presents abnormalities.

These abnormalities were represented by low 
lecithin/sphingomyelin (L/S) ratio (<2), and low 
phosphatidylglycerol content (1% or less of glycer-
ophospholipids) in bronchoalveolar lavage, always 
associated with respiratory failure. 

Hallman et al 25, showed that abnormal phospho-
lipid content in the lavage was not due to plasma 
contamination but caused by an increased catabo-
lism of phospholipids. 

Indeed, in respiratory failure, the lipid-protein 
complexes from lung lavage were surface inactive, 
whereas those from healthy controls had surface 
properties like lung surfactant.

Lung phospholipids from adult patients with re-
spiratory failure bears similarities with those from 
RDS newborns25. 

MYO-INOSITOL IMPROVES LUNG 
SURFACTANT PROPERTIES

Several studies demonstrated that myo-inositol (myo-
Ins), a naturally occurring polyol widely involved in 
several critical physiological processes26, promotes 
maturation of pulmonary surfactant phospholipids: 
phosphatidylcholine and phosphatidylinositol. In-
deed, extracellular myo-Ins concentrations regulate 
the synthesis of type II pneumocytes27.

Moreover, surfactant enriched in myo-Ins content 
is associated with significantly better mechanical 
properties of alveoli. Myo-Ins and its phosphate de-
rivatives recruit organic osmolytes and water with-
in the alveolar space and foster the reconstitution of 
a bio-film layer at the interface, thereby decreasing 
surface tension and antagonizing collapsing forces25.

INTERLEUKIN-6 IN RESPIRATORY 
INFLAMMATORY DISEASES 

Recent experimental reports indicate that IL-6 plays 
a pathogenetic role in respiratory system diseases. 
Indeed, IL-6 levels were increased in the airway epi-
thelial cells of asthmatic children2 and in the exhaled 
air3 and blood4 of asthmatic or COPD adult patients.

Other studies have provided indirect evidence that 
IL-6 causes respiratory system resistance increments: 
an inverse correlation between IL-6 in the sputum and 
Forced Expiratory Volume in the 1st second (FEV1) 
has been found in asthmatic and COPD patients5-7. 
Moreover, increased IL-6 levels correlating with im-
paired lung function have been reported in asthmatic 
and obese patients8. These data are extremely inter-
esting because they suggest that IL-6, and possibly 
other cytokines, play a causative role in determining 
impaired respiratory mechanics, typically observed in 
respiratory diseases such asthma and/or COPD.

Another common chronic disorder usually co-ex-
isting with asthma is the allergic rhinitis. Its clinical 
symptoms include sneezing, nasal congestion, and 
rhinorrhea; additionally, this disease affects the pe-
ripheral blood, bone marrow, and the lungs9. Several 
factors have been reported to play an important role in 
the pathogenesis of allergic rhinitis10. Disequilibrium in 
the Th1/Th2 immune response could cause selective 
eosinophil accumulation in the nasal mucosa and pro-
duction of allergen-specific immunoglobulin. Interac-
tions between allergen-specific immunoglobulins and 
inhaled allergens in the upper airway could also play an 
important role in promoting the inflammatory process 
of allergic rhinitis9,11. Moreover, a recent case-control 
study showed that IL-6 rs1800795 polymorphism was 
associated with an increased risk of allergic rhinitis12. 
These data were confirmed by another study that found 
the promotor variants in IL-6, rs1800795, to be the pre-
disposing factor for allergic rhinitis13.

PULMONARY SURFACTANT AS 
A LUNG BARRIER OF THE HOST

An important defensive mechanism that protects 
lungs from infectious diseases is the pulmonary sur-
factant that acts as a mechanic barrier.

Pulmonary surfactant is a lipoprotein complex that 
is synthesized and secreted by type II alveolar epithelial 
cells and the airway cells into the thin liquid layer that 
lines the alveolar epithelium. Once in the extracellular 
space, surfactant carries out two distinct functions. First, 
it reduces surface tension at the air-liquid interface of the 
lung14. Second, surfactant plays a role in host defense 
against infections and inflammatory processes. In vitro, 
surfactant proteins have been shown to stimulate the 
phagocytosis, chemotaxis, and production of reactive ox-
ygen and to regulate cytokine release by immune cells15.
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of transcription 3 (STAT3) pathways37-39. Moreover, 
myo-inositol, showed a strong chemo preventive ac-
tivity in KRAS driven-lung cancer model of CcspCre/+; 
KrasLSL−G12D/+ (CC-LR) mice by reducing circulating 
IL-6 levels and by switching to anti-tumoral M1 mac-
rophages. Proteomic and cytokine analyses revealed 
large reduction in IL-6 related pathways, including 
STAT3 phosphorylation40.

Other studies have proven myo-Ins action in mod-
ulating IL-6 levels in chronic inflammatory diseases 
such as polycystic ovary syndrome (PCOS), obesity 
and metabolic syndrome41-43. 

A study conducted on an animal model of PCOS 
with insulin resistance (PCOS-IR), demonstrated 
that myo-Ins supplementation leads to a downregu-
lation of IL-6 and influences the regulation of sever-
al other molecular pathways. 

Moreover, inositol specifically down-regulates 
IL-6 and PI3K (a key factor in the transduction of 
IL-6 signal), as well as inflammatory parameters – 
like PGE and COX2 – downstream of PI3K activa-
tion in different diseases like cancer and polycystic 
Ovary Syndrome (PCOS)44.

MYO-INOSITOL SAFETY, APPLICATION, 
AND WAYS OF ADMINISTRATION

Myo-ins safety in humans has been assessed by sev-
eral trials in which inositol was given for prolonged 
periods (from 1 to 12 months) at doses ranging from 
4 to 30 g/day. Mild side effects (mostly represented 
by nausea or diarrhea) were reported in a small frac-
tion of subjects, only for doses up to 12 g/day45. Myo-
ins is currently added to some infant milk powder at 
the percentage of 0.01%, as it has been recognized 
as safe when used in accordance with good manu-
facturing or feeding practice46. Intravenous infusion 
of Myo-Ins is already used in pulmonology for the 
therapy of respiratory tract affections, asthma and 
chronic obstructive pulmonary disease and for the 
treatment of RDS in premature babies32.

COVID-19 COMPLICATIONS

Compelling evidence report that the clinical presen-
tation of COVID-19 begins with an acute respiratory 
distress. The SARS-CoV-2 virus quickly moves from 
the lungs throughout the vascular network, reaching 
the gut, the kidneys, the heart, and the brain, with as-
sociated platelet-endothelial dysfunction and abnor-
mally rapid life-threatening blood clotting47. Indeed, 
SARS-CoV-2 infection is emerging as a thrombot-
ic and vascular disease targeting endothelial cells 
throughout the body, being particularly evident in 
patients with cardiometabolic comorbidities (e.g. hy-
pertension) with associated endothelial dysfunction48.

Additionally, inositol promotes a mechanical sta-
bilization of cell shape, mostly by modulating cyto-
skeleton dynamics, thus enabling alveolar cells to 
counteract collapsing forces28.

Mechanical effects displayed by myo-Ins make 
this compound essential in affording pulmonary 
protection against atelectasis processes in preterm 
infants26.

Early reports indicated that breast milk, especial-
ly colostrum, has a high concentration of inositol29-31, 
and several studies have been conducted in the last 
two decades on the supplementation of myo-Ins to 
premature infants with RDS. 

Among the most important placebo-controlled tri-
al conducted on this topic, Hallman et at32 demonstrat-
ed that the administration of inositol to premature in-
fants with RDS, receiving parenteral nutrition during 
the first week of life, is associated with increased sur-
vival without bronchopulmonary dysplasia and with a 
decreased incidence of retinopathy of prematurity. In 
preterm infants with RDS, a premature drop in serum 
inositol levels predicts a more severe course of the dis-
ease, while supplementation with inositol leads to rise 
in serum inositol concentration and improvement in 
the surfactant phospholipids33.

Moreover, studies with animal models confirmed 
the relationship between inositol and pulmonary sur-
factant. Indeed, compositional changes in fetal rat 
lung surfactant correlated with changes in plasma 
inositol levels, and supplementation restored normal 
phospholipid profile in the deprived rat pups27,34.

Although only few published trials for myo-Ins 
supplementation have been subjected to systematic 
review, a Cochrane study35 deemed the quality of the 
reports as appropriate. Thus, myo-Ins supplementa-
tion significantly reduces short-term adverse neona-
tal outcomes and the incidence of bronchopulmona-
ry dysplasia.

Therefore, the effectiveness of inositol in reduc-
ing the severity of RDS is consistent with experi-
mental data indicating that myo-Ins serves as a sub-
strate that enhances the synthesis and secretion of 
surfactant phospholipids in immature lung tissue 36. 

On these premises, myo-Ins deserves relevant 
consideration as a dietary supplement for premature 
infants, especially those not receiving full human 
milk feeds. 

Moreover, beside the use in newborn with RDS, 
myo-ins supplementation should also be considered 
for treating ARDS.

MYO-INOSITOL AS MODULATOR OF IL-6

Interestingly, myo-Ins decreases IL-6 levels in several 
experimental settings, due to an effect on the inosi-
tol-requiring enzyme 1 (IRE1)-X-box-binding protein 
1 (XBP1) and on the signal transducer and activator 
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It is well known that endothelial dysfunctions and 
thrombotic events are characterized by a suppressed 
endothelial nitric oxide synthase (eNOS) with con-
comitant nitric oxide (NO) deficiency. While the 
endothelium of healthy vessels releases nitric ox-
ide, a vasodilator and antithrombotic factor, such 
process is impaired in injured vessels, resulting in 
hypertension and thrombus formation49,50. Some cli-
nicians proposed that the driving force of potentially 
fatal outcomes in COVID-19 patients is a detrimen-
tal overreaction of the immune system known as a 
“cytokine storm”, an abnormal release of certain cy-
tokines that causes immune cells to attack healthy 
tissues. A cytokine storm may lead to leaking of 
blood vessels, drop in blood pressure and formation 
of clots, followed by catastrophic organ failure 47. 
Myo-Ins has been proven to have endothelial protec-
tive and restoring properties51,52. Recent studies con-
ducted on a genetically hypertensive animal model 
obtained using heterozygous mice for disruption of 
the endothelial nitric oxide synthase (eNOS) gene, 
showed that inositols supplementation (myo-inositol 
to d-chiro-inositol ratio 40:1) significantly improved 
vascular function. Indeed, systolic blood pressure re-
sulted reduced and endothelial function (relaxation 
and contraction) improved, followed by the decrease 
of radical oxidative species, the enhancement of 
eNOS and NO bioactivity53-56. Moreover, inositols 
enhanced the expression of inducible nitric oxide 
synthase (iNOS) in those animals who were lacking 
the eNOS gene, demonstrating also a compensatory 
effect in the NO pathway57. Therefore, mechanical 
effects displayed by myo-ins together with its pro-
tective role on endothelial function as well as the 
ability to modulate the pro-inflammatory cytokines 
(IL-6), make this compound promising in the miti-
gation of the SARS-CoV2 infection complications.

CONCLUSIONS

Myo-Ins is a key molecule of important intracellular 
signaling pathways, where it participates as com-
ponent of complex derivatives or in its free form. 
Myo-Ins influences the surfactant production, the 
modulation of inflammation, by downregulating 
the IL-6 production and exerts an endothelium pro-
tective action. These properties make inositol a key 
player in several biological activities. Thus, myo-
Ins supplementation should be studied as a possible 
“non-pharmacologic” therapeutic strategy in sev-
eral inflammatory and metabolic diseases such as 
PCOS, diabetes, pulmonary infections, and even as 
pioneering strategy to reduce the acute symptoms of 
COVID-19 and its fatal complications.
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